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Abstract

Objective—Beryllium workers may better understand their genetic susceptibility to chronic 

beryllium disease (CBD) expressed as population-based prevalence, rather than odds ratios from 

case-control studies.

Methods—We calculated CBD prevalences from allele-specific DNA sequences of 853 workers 

for Human Leukocyte Antigen (HLA)-DPB1 genotypes and groups characterized by number of 

E69-containing alleles and by calculated surface electronegativity of HLA-DPB1.

Results—Of 18 groups of at least 10 workers with specific genotypes, CBD prevalence was 

highest, 72.7%, for the HLA-DPB1*02:01:02/DPB1*17:01 genotype. Population-based grouped 

genotypes with two E69 alleles wherein one allele had −9 surface charge had a beryllium 

sensitization (BeS) of 52.6% and a CBD prevalence of 42.1%.

Conclusions—The high CBD and BeS prevalences associated with −9-charged E69 alleles and 

two E69s suggest that workers may benefit from knowing their genetic susceptibility in deciding 

whether to avoid future beryllium exposure.

Chronic beryllium disease (CBD) has a well-characterized immunologic mechanism 

requiring cell-mediated sensitization to the metal antigen. Beryllium sensitization (BeS) is 

affected by both exposure and genetic characteristics. Since 1993, six research groups, 

studying a number of beryllium-exposed populations, have confirmed that workers with a 

glutamic acid (E) in the 69th position of the Human Leukocyte Antigen (HLA)-DPB1 

molecule, involved in antigen presentation, have increased susceptibility for BeS and 

CBD.1–10 However, this supra-allelic E69 marker of genetic risk is present in more than one-

third of the U.S. population and far exceeds the prevalence of BeS and CBD in worker 

populations. For those reasons, E69 genetic testing was not pursued as a good predictor of 

who might develop CBD in a beryllium workplace,11 especially in light of concerns for 

employment and insurance discrimination.
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In 2008, the Genetic Information Nondiscrimination Act (GINA)12 prohibited genetic 

discrimination in employment and health insurance and precluded employers from using 

individually identifiable genetic testing in employment decisions. However, genetic studies 

have identified very high-risk subsets of E69 variants (Table 1).13–15 Workers may benefit 

from genetic testing to understand their susceptibility to CBD and to consider whether to 

avoid future beryllium exposure.

Worker genotypes pertinent to the immune response gene associated with BeS consist of two 

alleles. As of January 2016, there were 630 known DNA sequence variants of HLA-DPB1, 

of which 204 are HLA-DPB1*E69 (coding for E69, a glutamic acid in the 69th position of 

the protein), 380 are HLA-DPB1*K69 (lysine), 38 are HLA-DPB1*R69 (arginine), and 8 

had uncharacterized amino acids in the 69th position.16 Presence of one copy of the most 

common E69 allele, HLA-DPB1*02:01, confers an odds ratio of 2 for CBD compared with 

workers having no E69 alleles.13

Mechanistic work enabled through computational chemistry modeling14,17 and 

crystallization of the product of the most common HLA-DPB1*E69 allele in a 

heterodimer18 suggests that the beryllium cation binds deep in a pocket of the 

peptidemolecule’s binding groove on the antigen-presenting cell that contains negatively 

charged amino acids. Diverse self-peptides can then cover the bound beryllium ion without 

haptenization, changing the conformation of the HLA-DP heterodimer molecule such that 

the T-cell receptor binds to the antigen-presenting molecule in a manner common to auto-

immune mechanisms.19,20 The morphometry and electronegativity of specific amino acids in 

the binding groove explain the shape and energy required for stable bonding of a positive 

berylliumcation and differing self-peptides recognized by the T-cell receptor as an antigen.21

This mechanistic work provides biologic plausibility for the odds ratio observations of E69 

allelic risk of BeS and CBD. Having any two E69 alleles or having one of the E69 alleles 

with a −9 (most electronegative) charge on the surface of the molecule is associated with 

much higher odds ratios, up to 30.8 for CBD, compared with workers with no E69 allele.13 

The subset of HLA-DPB1*E69 alleles with −9 surface charge includes *93:01, *37:01, 

*29:01, *17:01, *16:01, *10:01, *09:01, *08:01, and *06:01. The most common E69 allele, 

*02:01, has a −7 surface charge, and having a single *02:01 allele has an odds ratio of 2.4 

for CBD compared with workers with no E69 allele.13 Most of the non-E69 alleles have 

surface charges of −3, −5, −6, and −7.15

Although estimation of odds ratios for CBD and BeS from case-control studies is well 

established,3,4,6,7,10,15,22,23 translation of these results into prevalence of CBD and BeS for 

specific genotypes requires population-based data. Here, we reexamine the National Institute 

for Occupational Safety and Health (NIOSH) data, some of which we contributed to a multi-

institutional case-control study.13 Unlike the other contributed studies, we have population-

based denominator data with which to calculate prevalence of CBD and BeS for aggregated 

genotypes. Prevalence, in contrast to odds ratios, is a more understandable concept and 

might motivate workers to avoid beryllium exposure if they have a rare −9-charged genotype 

or two E69 alleles with extremely high susceptibility to immune sensitization and CBD. For 

example, knowing whether his or her allelic genotype is more likely than not to result in 
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CBD may be more meaningful to beryllium workers than knowing that a risk is 30-fold that 

of a genetically different group of workers without E69.

METHODS

Study Population

The genetic study population consisted of current and former beryllium workers who 

participated in cross-sectional studies in either 1992 through 1994 or 1998 through 2001 at 

three industrial plants of the largest producer of beryllium and beryllium-containing 

products in the United States.8 Current workers were recruited between August 1999 and 

December 2001, and contact of former workers continued through 2005. Although previous 

publications concerning the NIOSH genetic studies8,14 were described as population-based, 

the number of CBD and BeS cases had been augmented by 19 historical cases that, though 

employed by the company, had not participated in previous cross-sectional studies. 

Therefore, we omitted these 19 from analyses of aggregated genotypes. We included two 

previously excluded employees who had no medical questionnaire regarding symptoms and 

job histories. We also included eight employees who were excluded from earlier publications 

because of suspected false-positive BeLPT tests for BeS in one of two laboratories 

conducting split testing and follow-up testing24; none with clinical follow up (N = 7) or 

surveillance had BeS or CBD and were included in this study as nonsensitized. These 

exclusions and additions resulted in a population-based study population of 834. All workers 

gave written informed consent approved by the NIOSH Institutional Review Board. Widely 

varying beryllium air concentrations existed within and among plants, although the 

prevalence of BeS and CBD identified through company medical surveillance differed little 

by plant.8,24–27

The beryllium company conducted surveillance on current workers for BeS using the 

beryllium-specific lymphocyte proliferation test (BeLPT) on blood samples, and the results 

were released to NIOSH with worker consent. We defined BeS as a confirmed abnormal 

BeLPT. The company offered clinical evaluation including bronchoalveolar lavage and 

transbronchial biopsy to both current and former workers with abnormal BeLPTs to 

establish the presence of BeS alone (without CBD) or findings consistent with CBD 

(granulomas or lymphocytic infiltrates or the presence of abnormal bronchoalveolar lavage 

BeLPT). We classified those participants declining clinical evaluation as BeS alone. One 

worker with progressive granulomatous disease arising during employment with only one 

abnormal BeLPT was classified as having CBD. For most participants, BeS alone and CBD 

status were current as of 2002. Some former workers had BeLPT testing and clinical 

evaluations as late as 2005. The approved genetic study design did not include prospective 

updating of BeS and clinical status in ongoing company medical surveillance of current 

workers, and we censored data from follow-up surveillance or clinical evaluations for which 

we had no participant permission.

Blood Samples and DNA Sequence Analysis

Participants gave a blood sample of approximately 7 mL that was analyzed at NIOSH for 

genotype during 2004 through 2006. We performed DNA-sequence determination using a 
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set of seven allele-specific primers (four forward and three reverse). Details of DNA 

extraction and DNA-sequence analysis were described in detail previously.28 The genetic 

results regarding E69 presence were protected under a 308(d) Assurance of Confidentiality 

provided by the Centers for Disease Control and Prevention that precluded sharing the 

identifiable results with anyone other than the individual participant.

Statistical Analysis

We calculated prevalence of CBD, BeS without CBD (BeS alone), and total BeS (BeS with 

or without CBD) as the number of persons with the health outcome divided by the number 

of persons with the genotype or genotype group. We present prevalence analyses for groups 

of 10 or more participants with identical genotypes in the entire genotyped population. For 

further analyses by aggregated genotype groups, population-based prevalences are better 

reflective of risk, more stable with larger denominators, and pertinent to workers with rare 

genotypes with fewer than 10 individuals. We used the two proportions z-test to determine 

whether the aggregated genotype proportions were statistically significantly different at P 
value 0.05 or less.

For participants with two E69 alleles (homozygous E69), we calculated prevalences for three 

groups: (1) those with both alleles regardless of surface charge; (2) those with only one 

allele of −9 surface charge, the other allele being any charge less negative than −9; and (3) 

those with both alleles having any surface charge less negative than −9.

For participants with only one E69 allele, we calculated prevalences for two groups: (1) 

those having an E69 allele with −9 surface charge; and (2) those with an E69 allele having 

any surface charge less negative than −9.

For participants with any E69 allele, we calculated prevalences for three groups: (1) those 

with at least one allele of any charge, (2) those with at least one −9-charged allele, and (3) 

those with at least one allele with any charge less negative than −9. We also calculated 

prevalences in the population-based group for all participants without any E69 alleles.

RESULTS

Full DNA-sequence determinations were made for 853 of the 884 DNA samples obtained 

for the study; 41 samples (4.8%) either did not amplify or did not produce interpretable 

signals. In the population-based cohort of 834, 68 persons had a diagnosis of CBD and 57 

had BeS alone.

Specific Genotypes Associated With Highest CBD and BeS Prevalences

Among the 853 genotyped participants, the 18 groups of at least 10 with identical HLA-
DPB1 genotypes constituted 66.8% of the genotyped study population. The genotype 

associated with the highest CBD prevalence contained the most common E69 allele (−7-

charged) paired with an E69 −9-charged allele, HLA-DPB1*02:01:02/DPB1*17:01, with 8 

of the 11 individuals (72.7%) having CBD and none having BeS alone (Table 2). The 

genotype associated with the second highest CBD prevalence among these 18 groups was 

HLA-DPB1*04:01/DPB1*10:01—a non-E69 −3-charged allele paired with an E69 −9-
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charged allele, with 8 of the 15 individuals (53.3%) having BeS, and the majority of these (6 

of 8) having CBD (40.0% CBD prevalence for the genotype). Of the 21 individuals with the 

genotype HLA-DPB1*02:01:02/HLA-DPB1*02:01:02 (homozygous for the most common 

E69 allele, which has −7 charge), 11 individuals (52.4%) had BeS, and 7 of these 11 had 

CBD (33.3% CBD prevalence for the genotype). With restriction of analyses to the 

population-based cohort, the highest risk genotype in Table 2 no longer met the criterion of 

having at least 10 participants, but two-thirds had CBD.

Population-Based Grouped Genotypes With Two E69 Alleles and Various Numbers of −9 
Charge

The group with two E69 alleles of any charge had a total BeS prevalence of 47.2% and a 

CBD prevalence of 28.3%. For genotypes that included an E69 allele with −9 charge, total 

BeS and CBD prevalences were higher than prevalences for genotype groups that did not 

include E69 alleles with −9 charge (Fig. 1). Groups with two E69 alleles, only one of which 

was −9-charged (the other allele was most often −7-charged), had a total BeS prevalence of 

52.6% and a CBD prevalence of 42.1%; of the 10 individuals with BeS, 8 (80.0%) had CBD. 

Groups with two E69 alleles wherein both alleles were any charge less negative than −9 had 

a total BeS prevalence of 46.9% and a CBD prevalence of 21.9%; of the 15 individuals with 

BeS, 7 (46.7%) had CBD.

Population-Based Grouped Genotypes With One E69 Allele, With and Without One −9-
Charged Allele

Total BeS and CBD prevalences of persons with only one E69 allele (the other allele being 

non-E69) were higher when the single E69 allele was −9-charged, as opposed to any other 

charge less negative than −9 (P = 0.009 for total BeS; P = 0.014 for CBD) (Fig. 1). In the 

group wherein the single E69 allele was −9-charged, the total BeS prevalence was 35.2%, 

and the CBD prevalence was 22.5% [16 of 25 BeS individuals (64.0%) had CBD]. In the 

group wherein the single E69 allele had any charge less negative than −9, the total BeS 

prevalence was 20.0%, and the CBD prevalence was 10.9% [24 of 44 BeS individuals 

(54.5%) had CBD].

Population-Based Grouped Genotypes With Any E69, With and Without Any −9-Charged 
Alleles; No E69 Alleles

For genotypes with at least one E69 allele, total BeS and CBD prevalences for grouped 

genotypes that included E69 alleles with −9 charge were higher than grouped genotype 

prevalences that did not include E69 alleles with −9 charge. In groups with any E69 allele 

regardless of charge, the total BeS prevalence was 27.3% and the CBD prevalence was 

16.0% [55 (58.5%) of the 94 individuals with BeS had CBD]; this group includes 

individuals who had one or two E69 alleles of −9 charge. The group with any E69 allele 

wherein one or both of the alleles were −9-charged had a total BeS prevalence of 38.0% and 

a CBD prevalence of 26.1% [24 (68.6%) of the 35 individuals with BeS had CBD]. Groups 

with any E69 allele wherein one or both were any charge less negative than −9 had a total 

BeS prevalence of 23.4% and a CBD prevalence of 12.3%; of the 59 individuals with BeS, 

31 (52.5%) had CBD. The group with no E69 alleles made up 58.8% of the genotyped 

population and had a total BeS prevalence of 6.3% and a CBD prevalence of 2.7% (Fig. 1).

Kreiss et al. Page 5

J Occup Environ Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

The high prevalences of BeS and CBD for rare E69 genotypes with −9 surface charge and 

E69 homozygotes raise reconsideration of genetic testing for prospective beryllium 

employees who might want to avoid occupational lung disease risk. In 2004, only 36 of 884 

participants in the prior published study8 obtained their personal E69 carrier status results 

(E69 positive or negative). However, they had to sign an additional consent acknowledging 

that there might be risks of genetic discrimination from health insurers and employers if this 

information were made known to them, either inadvertently or because of participant 

inability to protect personal results from subpoena. NIOSH’s 308(d) protection precluded 

our releasing individuals’ results to anyone but the individual. We did not ascertain reasons 

why personal results were (or were not) sought. With GINA protection, many prospective 

and current beryllium employees may have interest in their personal genotype results, 

particularly as the risk of the −9-charged E69 alleles or E69 homozygosity for BeS and CBD 

is high (population-based quantitative risk in Fig. 1). After conducting pre-GINA focus 

groups with 30 current and former beryllium workers at Department of Energy nuclear 

weapons sites, Silver et al29 suggested a threshold of “more likely than not” for giving 

workers access to genotype testing that would predict who might get a disease.

Until recently, we thought that genetic screening during beryllium employment had little 

value to already-exposed workers because beryllium body burden appears to confer lifetime 

risk for BeS and CBD. However, there is increasing evidence that CBD is associated with 

cumulative exposure,22,27,30 but that BeS can occur within weeks of employment.27,31 Thus, 

current employees sensitized early in employment may have personal interest in genotype 

testing; identification of high-risk −9-charged E69 alleles or homozygous E69 genotype 

might motivate self-protective limitation of further exposure to poorly soluble beryllium 

compounds that could accumulate in their lungs over time and result in CBD. In the 1940s, 

rash illness early in employment in beryllium metal extraction with soluble beryllium salt 

exposure had been cause for dismissal, because the medical providers associated it with risk 

of acute beryllium disease.32,33 Acute beryllium disease differed from CBD in being slowly 

reversible over a period of months away from exposure. In retrospect, the clinical picture of 

rash and reversible lung disease is best explained by cell-mediated sensitization to a soluble 

beryllium antigen that did not persist in the lung to support irreversible CBD.34 The cases of 

acute beryllium disease in the beryllium extraction part of the industry that later progressed 

to CBD may have reflected the lung accumulation of poorly soluble beryllium compounds. 

Both genotyping and reduced beryllium exposure may complement each other in prevention 

of CBD.

Longitudinal follow-up of this cohort will extend the current findings and improve the 

information that workers can use when deciding whether to limit accumulation of a 

persistent beryllium lung burden that could support CBD. For those with high genetic 

susceptibility to BeS, any beryllium exposure may be unwise, regardless of compliance with 

a potentially lower permissible exposure limit.35 Although GINA was intended to prevent 

discrimination in employment based on genotype, prospective workers or current workers 

may choose to select out of jobs with the potential for beryllium exposure. Now that we have 

identified −9-charged E69 and homozygous E69 genotypes as conferring sensitization or 
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CBD prevalence in about half of the population-based group, workers may have more 

interest in personally benefiting from this increased scientific knowledge. Whether potential 

beryllium workers or current workers have interest in limiting further beryllium exposure in 

the presence of a high-risk E69 genotype might be answered with further research. The 

potential application of the existing research to worker health is an appropriate practical 

application made possible by assuming legal protection from discrimination.

The setting of genetic testing of beryllium-exposed workers or potential workers, even as an 

employer-funded service, should be guided by ethical requirements governing the research 

to date: voluntary testing; a counseling context giving a basic understanding of risk factors 

and health consequences of beryllium exposure and genetic susceptibility if exposed; 

informed consent; and confidentiality. The American College of Occupational and 

Environmental Medicine published a position statement in 2015 expanding on good 

scientific practices.36 Genetic counselors may benefit from additional training regarding 

work life genetic issues. The focus group findings before GINA still suggest that an 

Assurance of Confidentiality may be beneficial to preclude disclosure of genetic results to 

anyone other than the participant because of worker concerns over employers possibly 

having access to this information.29 The public health system conducts genetic testing on 

newborns and might be a locus of extending scientific knowledge about occupational disease 

susceptibility to workers, independent of employers.

This study had the strength of large numbers of population-based genotyped participants 

from the primary beryllium production industry. The employer, who received no individual 

genetic results and would not reassign workers on the basis of genetic risk or sensitization 

status, cooperated by allowing worker education and participation on work time. A 

limitation of the study is that we had no systematic informed consent to receive longitudinal 

BeLPT results collected by the company in ongoing current worker screening or clinical 

evaluations of those who may have undergone subsequent diagnostic tests for CBD. In one 

of the three worker cohorts from this employer, we found that cross-sectional prevalence of 

BeS was one-third of the estimate of sensitization over 11 years of follow-up.37 Accordingly, 

the prevalence of sensitization and CBD in this genetic study likely underestimates those 

who have since developed BeS or CBD over time in relation to their genotypes. Although 

the genotyped population was relatively large, one-third of the participants were omitted 

from groups of 10 or more in Table 2 because of small numbers with specific genotypes, and 

even fewer groups of 10 or more resulted from the population-based analyses. With research 

into CBD prevalences associated with high-risk genotypes, employers might be ethically 

obligated to ensure that workers have the option of confidential genetic testing for many 

alleles.36 We do not think that these data are sufficient to address standard setting in relation 

to genotype,38 although some small percentage of workers with high-risk genotypes may not 

be able to safely tolerate any beryllium exposure, despite proposed lowering of the 

permissible exposure limit.35

In summary, the study of genetic risk for BeS and CBD has allowed researchers to elucidate 

mechanisms of immune-mediated disease with a known antigen. This research also might 

benefit prospective and current beryllium workers given current legislation that protects 

them from employment and health insurance discrimination. Whether prospective and 

Kreiss et al. Page 7

J Occup Environ Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



current beryllium workers may want to use E69 genotyping in decisions to avoid a 

cumulative burden of poorly soluble beryllium that supports CBD is a matter for further 

research. Neither proposed regulation to lower the beryllium permissible exposure limit nor 

genotyping is likely to prevent all CBD, some of which occurs in the absence of E69 

genotypic risk (Fig. 1). However, workers, employers, and the public would benefit from 

further research that highlights what degree of genetic risk, coupled with the appropriate 

GINA-compliant settings of information exchange and counseling, may motivate highly 

susceptible workers to avoid beryllium exposure.
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FIGURE 1. 
Percent prevalence of total BeS and CBD by number of E69 and −9 alleles, among 

population-based genotyped beryllium workers. Numbers above bars are percentage of 

population with that genotype group. Letters within bars indicate statistically significantly 

different comparisons from other bar with same letter. aP = 0.009; bP = 0.014.
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TABLE 1

Prior Findings Regarding Genetic Susceptibility to CBD by Author and Year

Genetic Characteristic
Finding in CBD Cases vs All Beryllium-Exposed
Controls (Unless Otherwise Stated) Author and Year

E69 homozygosity, all charges OR 31.7 (CI 3.5–284.0) Wang et al, 19993

OR 19.4 (CI 4.4–84.5) Maier et al, 20037

OR 24.3 (CI 10.8–54.6) McCanlies et al, 20048

OR 2.90 (CI 1.16–7.14) Rosenman et al, 201110

OR 30.8 (CI 16.6–57.2) Silveira et al, 201213

Non-*02:01 E69 (all charges) OR 14.4 (CI 2.4–21.1) Wang et al, 19993

OR 12.2 (CI 6.1–24.4) Maier et al, 20037

OR 1.95 (CI 0.97–3.91, P = 0.041) vs E69 controls Rosenman et al, 201110

OR 2.4 (CI 1.8–3.3) vs no E69 controls Silveira et al, 201213

−9 charge E69 alleles OR 18.3 (CI in Fig. 1) Snyder et al, 200814

OR 6.8 (CI 4.2–11.1) vs non-E69 controls Weston et al, 200515

OR 43.2 (CI 17.33–110.41) vs E69 controls Rosenman et al, 201110

−9 charge E69 alleles vs −7 E69 alleles OR 2.8 (CI 1.6–5.0) Weston et al, 200515

OR 2.8 (CI 1.6–4.9) Snyder et al, 200814

OR 3.22 (CI 1.55–6.72) Rosenman et al, 201110

OR 5.6 (CI 3.6–8.8) Silveira et al, 201213

*09:01, *10:01, or *17:01 (all −9 charge) OR 14 (CI 4.0–49.4) vs E69 controls Wang et al, 19993

*06:01 (−9 charge) Higher frequency, no statistics given Wang et al, 19993

Statistically associated with combined BeS and CBD Rossman et al, 20026

12.8% vs 0.0%, P < 0.0001 Maier et al, 20037

Higher frequency, no statistics given Rosenman et al, 201110

OR 10.8 (CI 5.5–21.3) vs no E69 in controls Silveira et al, 201213

*09:01 (−9 charge) 4.5% vs 0.0%, not significant Saltini et al, 20015

9.6% vs 0.9%, P = 0.004 Maier et al, 20037

Higher frequency, no statistics given Rosenman et al, 201110

OR 4.4 (CI 1.9–10.1) vs no E69 in controls Silveira et al, 201213

*10:01 (−9 charge) 13.6% vs 5.4%, not significant Saltini et al, 20015

16.0% vs 4.0%, P = 0.005 Maier et al, 20037

Higher frequency, no statistics given Rosenman et al, 201110

OR 4.5 (CI 2.6–4.5) vs no E69 Silveira et al, 201213

*17:01 (−9 charge) 9.1% vs 0.0%, not significant Saltini et al, 20015

12.4% vs 4.3%, P = 0.03 Maier et al, 20037

Higher frequency, no statistics given Rosenman et al, 201110

4.9% vs 0.6%, no statistics given Silveira et al, 201213

BeS, beryllium sensitization alone without CBD; CBD, chronic beryllium disease; CI, 95% confidence interval; E69, HLA-DPB1 allele with a 
glutamic acid (E) in 69th position of protein encoded by gene; OR, odds ratio.
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Weston et al, 2005,15 is a meta-analysis (with some assumptions) of Saltini et al, 2001,5 Rossman et al, 2002,6 and Maier et al, 2003,7 each an 
independent beryllium-exposed cohort. He showed that the log OR for CBD was linearly associated with increasing electronegativity of surface of 
antigen-binding site.
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